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A Diffusion: Fick's second lav

Today's topics
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Continued from last Jecture, we will learn how to deduce the Fiek's second faw, an ;
understand the meanings when applied to some practical cases
Let's consider a case like this
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We can define the local concentration and diffusion flux (through a unit arca) at position "7
as.
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is is the Fick’s second law,

In three-dimensional space, it can be written as:

At steady (equilibrium) state, we have

dc(x,1)/dt=0 (meaning no concentration change)

Then, solving Eq. (1) gives

c
-D- E_ J = constant --- back to the Fick’s first law.

So, Fick’s first law can be considered as a specific (simplified) format of the second law when
applied to a steady state.

Now, let’s consider two real practical cases, and see how to solve the Fick's second law in
these specific cases.

Case 1. Homogenization: ( non-uniform = uniform)

Consider a composition profile as superimposed sinusoidal variation as shown below, where
the solid line represents the initial concentration profile (at t=0), and the dashed line
represents the profile after time 7.
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with the Fick’s second law, -5— = DTT. where D is teh diffusion coefTicient, 3
t ox

constant.
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